

Progressive Education Society's Modern College of Arts, Science & Commerce Ganeshkhind, Pune – 16 External Examination – Nov./ Dec. 2022 **Faculty: Science and Technology**

Program: B.Sc. Blended SET: A Semester: III

Program (Specific): **Course Type: Core** Class: S.Y.B.Sc. Max.Marks:50

Name of the Course: MATHS 3 Vector calculus and Probability and Statistics I

Course Code: MTH 301

Instructions to the candidate:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.

Q.1) Select correct option.

[10]

- i) A matrix having only one column is called
 - a) Scalar matrix b) Diagonal matrix c) Row matrix d) Column matrix
- ii) If u = (3,4) then $||u|| = ____.$
 - a) 5
- b) 3
- c) 1
- d) 4
- iii) Two vectors u and v are said to be orthogonal if $\langle u, v \rangle =$ ____.
 - a) 1
- b) 2
- c) 0
- d) -1
- iv) The eigen values of the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are ____.
 - a) 1,1
- b) 1,-1
- c) 0,1
- d) 0,-1
- v) For the vector valued function $\overline{r}(t) = (t^2 3t)\overline{t} + (4t + 1)\overline{t}$, $\overline{r}(0) = \underline{\hspace{1cm}}$
 - a) 0
- b) *ī*
- c) $3\overline{i}$
- d) $4\overline{i}$

- vi) $\int_0^1 x \, dx =$ _____.
 - a) 0
- b) 1
- c) 2
- d) $\frac{1}{2}$

- vii) If $y = x^2$ then $\frac{dy}{dx} =$ ____.
 - a) 2x
- b) 2
- c) x
- d) 0
- - a) 1
- b) -1 c) 0
- d) 2

ix)	Α	function	f(x)	is said	to be	an even	function	if <i>f</i> (-	- <i>x</i>)	=	
-----	---	----------	------	---------	-------	---------	----------	----------------	--------------	---	--

- a) 0
- b) -f(x)
- c) 1
- d) f(x)
- x) $\sin x$ is a periodic function of period $L = \underline{\hspace{1cm}}$.
- a) 2π
- b) π
- c) 0
- d) -2π

Q.2) Answer the following (Any 10)

[20]

- i) State Cayley-Hamilton theorem
- ii) Find determinant of the matrix $\begin{bmatrix} 4 & 3 \\ 0 & 2 \end{bmatrix}$.
- iii) If $\langle u, v \rangle = -3$, $||u|| = \sqrt{19}$, ||v|| = 3 then find the angle between u and v.
- iv) When a set of vectors is said to be orthonormal?
- v) Compute the curl of the vector field $\overline{F}(\overline{r}) = yz\overline{i} + xz\overline{j} + xy\overline{k}$.
- vi) Define Vector Valued Function and give one example of it.
- vii) Compute the partial derivative of $\overline{F}(\overline{r}) = x^2\overline{i} + y^2\overline{j}$ with respect to x and y.
- viii) Find the gradient of $f(\overline{r}) = x^2 y^2$.
- ix) Define Polar Co-ordinates?
- x) State Green's Theorem'.
- xi) Show that $f(x, y) = x^2 y^2$ is a harmonic function.

xii) Define Continuity of a vector valued function.

Q.3) Answer the following (Any 4)

[20]

i) Find Characteristic Polynomial and all eigen values of the matrix

$$A = \begin{bmatrix} 2 & 4 & 1 \\ 1 & 2 & 3 \\ 2 & 6 & 1 \end{bmatrix}.$$

ii) For the scalar field $f(\bar{r}) = y$ where $\bar{r} = x\bar{i} + y\bar{j}$ and the curve is $\bar{a}: [0, \pi] \to \mathbb{R}^3$, defined by

$$\bar{a}(t) = cost\bar{i} + sint\bar{j}$$
, evaluate $\int f \, ds$.

iii) Find
$$\overline{f}(2)$$
 where $\overline{f}(t) = (t^2 + 1)\overline{i} + (4t - 3)\overline{j} + (2t^2 - \frac{1}{2}t)\overline{k}$ is continuous at t=2.

- iv) Evaluate $\int (x^2 + e^x) dx$ along the path $\Gamma = [0.4]$.
- v) Compute the total derivative of $\bar{a}(t) = cost\bar{i} + sint\bar{j} + e^t\bar{k}$.
- vi) Evaluate : $\lim_{t\to 0} [(1+3t)^{\frac{1}{t}}]i + \frac{\sin 3t}{t}\vec{j}$.